Affiliation:
1. AT&T Bell Laboratories, Murray Hill, NJ 07974, USA
Abstract
In this review, the present level of infrared spectroscopy at surfaces is described by using hydrogen-terminated silicon surfaces as model systems. The electronic structure of the adsorbate, H, and the large mass difference between H and Si simplify the interpretation of the data and make it possible for the theories to give reliable quantitative information. In particular, ab initio cluster calculations provide an accurate structural description and precise vibrational frequencies for various surface configurations, and are used as the basis of a priori simulations of the line shape of H on silicon. A special emphasis is given to the recent discovery of chemical etching to prepare H-terminated silicon surfaces because it has greatly helped in understanding structural and dynamical properties of H-terminated silicon surfaces. In particular, both the energy and phase relaxation of the Si-H stretching vibration on the flat, ideally hydrogen terminated Si(111) surface have been measured directly and evidence for vibrational energy diffusion has been obtained on vicinal, H-terminated Si(111) surfaces. The data and current theoretical understanding of the chemically prepared Si(111) surfaces are presented and discussed.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献