THE ELECTRONIC CORRELATION EFFECT FROM WEAK TO STRONG IN THE THREE DIMENSIONAL ELECTRON GAS

Author:

YU ZHI-MING1,WANG QING-WEI1,LIU YU-LIANG1

Affiliation:

1. Department of Physics, Renmin University of China Beijing 100872, P. R. China

Abstract

Based on the success of the eigenfunctional theory ( EFT) in the one-dimensional model,16,24,51 we apply it to the three-dimensional homogeneous electron gas. By EFT, we first present a rigorous expression of the pair distribution function g(r) of the electron gas. This expression effectively solves the negative problem of g(r) that when electronic correlation effect is strong, the previous theories give a negative g(r),9 while g(r) is strictly a positive function. From this reasonable g(r), we estimate and establish a newly effective fitting expression of the ground state energy of electron gas. The new fitting expression presents a similar result with present theories when rs is small, since only in the limit of rs is small, present theories estimate a exact ground state energy. When rs increases, the difference between EFT and other theories becomes more and more remarkable. The difference is expected as EFT estimates a reasonable g(r) and would effectively amend the overestimate of previous theories in the ground state energy. In addition, by the ground state energy, we estimate the phase transition derived by the strong correlation effect. When the density decreases, the electronic correlation effect changes from weak to strong and we observe a sudden phase transition from paramagnetic to full spin polarization occurring at rs = 31 ± 4.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3