Effects of deformation on Zn atom-adsorbed borophene

Author:

Su Qing1,Wang Ying1ORCID,Gao Xuewen1,Liu Guili1,Zhang Guoying2

Affiliation:

1. College of Architecture and Civil Engineering, Shenyang University of Technology, 110870 Shenyang, P. R. China

2. College of Physical Science and Technology, Shenyang Normal University, 110034 Shenyang, P. R. China

Abstract

The effects of tensile and compressive deformation on the structural stability, electronic structure and optical properties of the Zn atom-adsorbed borophene system, which are exhibited by reflectivity, absorption coefficient, bandgap and adsorption energy, were studied using the first-principles calculations based on density functional theory (DFT). The borophene planes were found to be distorted following Zn atom adsorption. The adsorption energy calculations show that the stability decreases both under tensile and compressive strains. When tensile and compressive loading increase to 5%, respectively, the system loses the stability and the ability of adsorbing Zn atoms on borophene. The band structure and density of states analysis show that the band structure of borophene is changed by the Zn atom adsorption, with a band overlap near the Fermi level and more impurity energy levels in the conduction band. The hybridization is formed between Zn atom and borophene in the range of –12[Formula: see text]eV to 6[Formula: see text]eV, with the s and p orbitals both contributing to the conduction and valence bands, but p orbitals make a larger contribution to the total density of states than s orbitals. Studies of optical properties have shown that tensile and compressive strains both increase the dielectric constant of the adsorbed system, with compressive strains causing a redshift in the major peaks of the real and imaginary parts of the spectrum. The tensile strain has little effect on the absorption coefficient and reflectance of the borophene. As the compressive strain increases, the peak absorption coefficient of the adsorbed system is shifted to the blue and the peak reflectance is redshifted.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Liaoning Provincial Department of Education Project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3