Identification of topological measures of visibility graphs for analyzing transitions in complex time series

Author:

Tiwari Mukesh1ORCID,Wong Yiu-Man2

Affiliation:

1. Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, Gujarat 382007, India

2. Department of Physics, Lafayette College, 730 High Street, Easton, PA 18042, USA

Abstract

In this paper, we investigate signatures of variation in the behavior of correlated time series by analyzing changes in the topological properties of the corresponding visibility graph. Variations in six different network measures: assortativity, average path length, clustering, transitivity, density, and the average of the mean link length, are explored. We construct visibility graphs from the original and the magnitude and sign of its increment series. Both the horizontal and the natural visibility graphs are studied. Through extensive numerical studies on the time series of fractional Brownian motion (fBm), we first identify network measures that can reflect the changes in correlations in the time series. The efficacy of these markers is examined to identify the transitions in two systems, a two-dimensional (2D) Ising spin system and EEG data with seizures. While all the identified network measures capture the change in the thermal equilibrium correlations for the Ising spin system, they have limited success in the case of the time-dependent fluctuations in the EEG data. We identify some markers relevant to detecting seizures in the EEG data set.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3