Electromagnetic field on a photothermal semiconducting voids medium under Lord–Shulman and refined multi-phase lag models in thermoelasticity

Author:

Hafed Zahra S.1ORCID,Abo-Dahab S. M.2ORCID,Kilany A. A.3ORCID,Ahmed Sameh E.1ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, King Khaled University, Abha 21589, Saudi Arabia

2. Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt

3. Mathematics Department, Faculty of Science, Sohag University, Nasser City, Sohag, Egypt

Abstract

This study investigates the contemporary thermoelasticity theories in a photothermal semiconducting medium with voids influenced by the electromagnetic field. Boundary conditions of the phenomenon were based on the equations that regulate it concerning the stresses, carrier density, change in volume fraction field and temperature on the surface space. The equations were solved in normal mode technique, and the results are displayed by graphs. A comparison has been made with the findings of the literature when neglecting the new external parameters. The findings show that the presence or absence of electromagnetic field and carrier density significantly impacts on the phenomenon. From the results obtained, it is clear that the effects of electromagnetic field, carrier density, volume fraction and thermal relaxation times are very pronounced and applicable in diverse fields including geophysics, astronomy, engineering, biology, etc.

Funder

King Khalid University

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3