PROTON CONDUCTIVITY AND THERMODYNAMIC FEATURES IN THE HYDROGEN-BONDED MOLECULAR SYSTEMS

Author:

PANG XIAO-FENG12,ZHANG HUAI-WU3,ZN JUN4

Affiliation:

1. Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

2. International Centre for Material Physics, Chinese Academy of Sciences, Shenyang 110015, P. R. China

3. College of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

4. College of Physical Science and Technology, Sichuan University, Chengdu 610065, P. R. China

Abstract

The proton conductivity and thermodynamic features, arising from motions of the ionic and bonded defects, in hydrogen-bonded molecular systems have been investigated by the quantum-mechanical method and the transfer integral way in our model, in which the collective effect and the mutual correlation between the protonic and heavy ionic sublattices are specially considered. We first derived the equations of motion and its soliton solutions from the model Hamiltonian. The results obtained show that this model can simultaneously support motions of the ionic and bonded defects which are due to competition of the double-well potential and non-linearly coupled interaction between the protons and heavy ions. Thus we find out the mobility of the kink-antikink pair and electrical-conductivity of the proton transfer in the hydrogen-bonded systems exposed in an externally applied electrical-field through the dynamic equation of the kink-antikink pair and its solution in this model. For ice, the mobility and electrical conductivity of the proton transfer obtained are about (6.5 - 6.9)×10-6 m 2/ V · s and (7.6 - 8.1)×10-3(Ω · m )-1, respectively, which are in the domain of semiconductors and are basically consistent with experimental values for the crystal. Finally we calculate the free energy and specific heat of the systems with finite temperature by the model Hamiltonian and transfer integral way. The specific heat is also consistent with experimental data. This is a very interesting result.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3