Effect of inhomogeneous re-oxidation on Ni-based SOFC oxidation resistance

Author:

Lou Kang1,Wang Feng Hui1,Lu Yong Jun1,Zhao Xiang1

Affiliation:

1. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, P. R. China

Abstract

Inhomogeneous re-oxidation, which causes graded NiO content along anode thickness, has been confirmed to be a key reason for Ni-based cell cracking during redox progress. In this paper, an analytical model is developed to estimate the impact of inhomogeneous re-oxidation on Ni-based solid oxide fuel cell (SOFC) oxidation resistance. And experiments, in which the SOFC was partially re-oxidized, were implemented for model trial. Model results show that electrolyte internal stress can be significantly reduced (from 367 MPa to 135 MPa, when the oxidation degree is 60%), and the electrolyte can remain intact even when the oxidation degree reaches about 70%, if the anode was re-oxidized uniformly. This impact of inhomogeneous re-oxidation on stress in the electrolyte decreases as the anode thickness increases. Scanning electron microscopic (SEM) images of partially oxidized anode cross-sections confirmed that Ni oxidation was inhomogeneous, in which the outer regions of the anode became almost fully oxidized, while the inner regions remained metallic. And the inhomogeneity increases with the redox times. Consequently, it is important to avoid gradients in NiO content during oxidation progress to prevent cell cracking.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3