An investigation on strain and magnetic properties of perovskite manganite superlattice films

Author:

Su Jianliang1,Cai Chengwei2ORCID,Ji Mei2

Affiliation:

1. Suzhou Branch of Jiangsu Union Technical Institute, Suzhou 215009, China

2. Suzhou Institute of Industrial Technology, Suzhou 215104, China

Abstract

The mixed-valence perovskite manganites attracted much attention because of their interesting electro-magnetic properties, and strain modulation on magnetic properties of perovskite manganites is worth exploring. In this paper, [La[Formula: see text]Ca[Formula: see text]MnO3/La[Formula: see text]Ca[Formula: see text]MnO3][Formula: see text] superlattice films with different La[Formula: see text]Ca[Formula: see text]MnO3 layer thicknesses are prepared by pulsed laser deposition (PLD). The crystal structures (lattice constants) of samples are measured by X-ray diffraction (XRD). The strain of the films is determined according to their crystal structures. The magnetic hysteresis loops (M-H loops) and magnetization versus temperature (M-T) curves of these superlattice films are measured by the physical property measurement system (PPMS). From the M-H loops, the coercive field (H[Formula: see text] of the samples can be measured. From the M-T curves, the Curie temperature (T[Formula: see text] of the samples can be obtained. All samples show a ferromagnetic to paramagnetic transition at TC, and the [La[Formula: see text]Ca[Formula: see text]MnO3/La[Formula: see text]Ca[Formula: see text]MnO3][Formula: see text] sample with the La[Formula: see text]Ca[Formula: see text]MnO3 layer thicknesses of 72[Formula: see text]Å has an antiferromagnetic Néel transition at TN. According to the strain state and magnetic phases, the magnetic properties are comprehensively analyzed. It is found that with the increase of ferromagnetic La[Formula: see text]Ca[Formula: see text]MnO3 layer thickness, the ferromagnetic phase is increased, and the double exchange effect can also be enhanced, resulting in the increase of TC. When the thickness of La[Formula: see text]Ca[Formula: see text]MnO3 reaches 96[Formula: see text]Å, the uneven strain distribution in the superlattice can induce the reduction of ferromagnetic phase compared with antiferromagnetic phase (even antiferromagnetic phase starts to appear), and the double exchange effect can be weakened, and finally leading to the decrease of TC. In addition, with increasing the La[Formula: see text]Ca[Formula: see text]MnO3 layer thickness, HC gradually decreases. The change of HC is related to strain states and magnetic phase interactions in the samples. The analysis of the strain and magnetism can contribute to the understanding of perovskite manganite superlattice films.

Funder

Graduate Research and Innovation Project of Suzhou Institute of Industrial Technology

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3