Application of micropolar fluid model to blood flow through catheterized artery with stenosis and thrombosis

Author:

Ashfaq Muhammad1ORCID,Asghar Zeeshan2ORCID,Nie Yufeng1ORCID,Shatanawi Wasfi234ORCID

Affiliation:

1. Department of Computing Science, School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an City, Shaanxi Province 710072, P. R. China

2. Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

3. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

4. Department of Mathematics, Faculty of Science, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan

Abstract

This paper presents a model of nonisothermal blood flow through a diseased arterial segment due to the presence of stenosis and thrombosis. The rheological properties of the blood in the annulus are captured by utilizing micropolar fluid model. The equation describing the blood flow and heat transfer is developed under the assumption that stenosis growth into the lumen of the artery is small as compared to the average radius of the artery. Biological processes like intimal proliferation of cells or changes in artery caliber may be activated by small growths that cause moderate stenotic blockages. Closed-form solutions for temperature, velocity, resistance impedance and wall shear stress are obtained and then utilized to estimate the impact of various physical parameters on micropolar blood flow. Graphs are plotted to illustrate variations in temperature, velocity, shear stress at the wall and resistance impedance against different controlling parameters. The results are also validated via the bvp4c approach.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3