ATOMIC STABILIZATION IN THE PRESENCE OF INTENSE LASER PULSES

Author:

SU Q.1,SANPERA A.2,ROSO-FRANCO L.3

Affiliation:

1. Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA

2. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK

3. Departamento de Fisica Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain

Abstract

The nonperturbative response of atomic systems under strong laser radiation has been an important area of research both experimentally and theoretically. In a typical experiment, a very high power laser (operating at an intensity of the order of 1013 W/cm 2 or higher, delivering 1 µm wavelength light pulses with duration from a few pico-seconds down to a few hundred femto-seconds) is focused down to a tight spot in space filled with dilute gas where ionization occurs. These experiments have been successful in studying the single-atom strong-field physics where the predictions of ionization based on low-field perturbation theory are invalid. Various theories have been used to explain new effects associated with different intensity regions. In this review we intend to summarize the steps for arriving at a new theoretical prediction of atoms in laser pulses of intensity 1016 W/cm 2 or stronger. The prediction that atoms tend to stabilize in laser pulses strong enough to produce full ionization is rather counter-intuitive. The phenomenon of atomic stabilization will be introduced through space-time integration of Schrödinger equation. A more quantitative account of the associated effects during a stabilization will be analyzed through a simplified one-dimensional long-range potential. To further understand the features of stabilization, a one-dimensional short-range potential is also employed. We will mention some possible experimental consequences of stabilization.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3