Affiliation:
1. Department of Electronics and Communication, GLA University, Mathura 281406, India
Abstract
Zinc oxide (ZnO), a material with excellent electron mobility and a low-temperature requirement for production, is a promising option for use as an electron transport layer in perovskite solar cells (PSCs). However, it does have the drawback of having a low open-circuit voltage ([Formula: see text]). Herein, to increase the [Formula: see text] parameter of ZnO-based PSCs, graphene quantum dots (GQDs) are incorporated into the ZnO precursor and used as desirable ETL for PSCs. The presence of GQDs in ZnO ETL facilitated photo-electrons at the ETL/perovskite interface by reducing charge transfer resistance in this interface. Compared to the net ZnO-based PSCs, solar cells using GQD-doped ZnO as ETL have better stability, comparable [Formula: see text], higher [Formula: see text], and FF. The best GQD-doped-ZnO ETL-based PSCs recorded the highest power conversion efficiency of 20.23% with [Formula: see text] of 1.130[Formula: see text]V. Meanwhile, the boosted PCE of FAPbI3-based PSCs is achieved due to the improved perovskite crystal quality, the effective defect passivation effect of GQDs at ZnO/FAPbI3 interface, and the increased electrical conductivity of ZnO ETL. In addition, the GQD-doped ETL devices showed higher ambient air stability than the devices with net ZnO ETLs.
Publisher
World Scientific Pub Co Pte Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献