Detailed investigation of dynamic of Bose–Einstein condensation with two, three body and higher-order interactions

Author:

Üzar Neslihan1

Affiliation:

1. Science Faculty, Physics Department, Istanbul University, Vezneciler, 34134 Istanbul, Turkey

Abstract

In this study, we investigate the effects of three body and higher-order interactions (HOIs) with two-body interaction on ground state properties of Bose–Einstein condensation (BEC) for combined optical and harmonic potentials in detail by solving new modified Gross–Pitaevskii equation (GPE). In fact, the basis of the study is combinations of attractive and repulsive two-body interaction with other attractive and repulsive interaction types. The obtained results show that taking into account higher order and three-body interactions collectively support to stabilize the BEC system regardless of repulsive or attractive two-body interaction. When repulsive (attractive) binary interaction exists in the system, having at least one attractive (repulsive) interaction type makes the system stable. Also, the stability of the BEC system is discussed by the calculating energy. The energy of the system is determined by semi-analytical approach. Finally, the chemical potential of system is calculated according to different possible combined interaction types. It is observed that generally, the sign of the chemical potential is determined by sign of the strongest interaction in the system, especially three-body interaction. Detailed results are given in this paper.

Funder

Bilimsel Araştırma Projeleri Birimi, Istanbul Üniversitesi

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3