MEASUREMENT OF THE HARDNESS OF ULTRA-THIN FILMS BY THE FIRST DERIVATIVE OF LOAD-DISPLACEMENT CURVE FROM NANOINDENTATION DATA

Author:

KUMAR AMIT1,ZENG KAIYANG1

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

Abstract

The commonly-used nanoindentation experiments for measuring hardness of thin films may not give the accurate results when the thickness of the film is in the range of few hundred nanometers or less due to the unavoidable substrate effects. The available analysis methods usually work well when the indentation depth is less than one tenth of the total thickness of the film; otherwise, it is very difficult to determine the film-only properties without substrate effects. This work proposes an alternative analysis to measure the hardness of ultra-thin film from nanoindentation data. This method is tested for numbers of bulk materials and the results agreed well with literature reported values; the method is then applied to thin films. It is found that this analysis can give very accurate results for different kind of film-substrate systems such as soft-films on hard-substrate and hard-film on soft-substrate. As the proposed method is based on the measurement of hardness at each indentation step therefore, it is also capable to show at what indentation depth the substrate starts affecting the indentation-measured hardness values.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3