On-chip photonic transistor based on the spike synchronization in circuit QED

Author:

Gül Yusuf12

Affiliation:

1. Department of Physics, Boğaziçi University 34342 Bebek, Istanbul, Turkey

2. Momentum Research and Development, METU Technopolis 06800 Çankaya, Ankara, Turkey

Abstract

We consider the single photon transistor in coupled cavity system of resonators interacting with multilevel superconducting artificial atom simultaneously. Effective single mode transformation is used for the diagonalization of the Hamiltonian and impedance matching in terms of the normal modes. Storage and transmission of the incident field are described by the interactions between the cavities controlling the atomic transitions of lowest lying states. Rabi splitting of vacuum-induced multiphoton transitions is considered in input/output relations by the quadrature operators in the absence of the input field. Second-order coherence functions are employed to investigate the photon blockade and delocalization–localization transitions of cavity fields. Spontaneous virtual photon conversion into real photons is investigated in localized and oscillating regimes. Reflection and transmission of cavity output fields are investigated in the presence of the multilevel transitions. Accumulation and firing of the reflected and transmitted fields are used to investigate the synchronization of the bunching spike train of transmitted field and population imbalance of cavity fields. In the presence of single photon gate field, gain enhancement is explained for transmitted regime.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3