Affiliation:
1. Department of Physics, University of Wollongong, Wollongong, NSW 2522, Australia
Abstract
A detailed theoretical study is presented for spontaneous optical emission from a two-dimensional electron gas (2DEG) in the presence of a unidirectional spatially periodic modulation at low temperatures. The momentum- and energy-balance equations for electron–photon interactions in the device system are solved self-consistently using the Boltzmann equation, from which we can obtain the frequency and the intensity of the electromagnetic radiation generated. The results obtained indicate that: (1) in an electrically modulated 2DEG at low temperatures, a strong electromagnetic radiation emission up to W/cm2 can be generated by applying a small d.c. electric field; (2) the radiation emission is generated indirectly in the occupied subbands through electronic transitions around the Fermi level; (3) the frequency of the radiation generated is at about 0.1 THz; (4) in the low frequency regime, spontaneous multiphoton emissions can be observed; and (5) this type of optical emission depends strongly on the sample parameters such as the electron density of the 2DEG and the modulation length.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics