On electrical transport and thermoelectric performance in Half-Heusler phase ScNiSb

Author:

Ciesielski Kamil1ORCID,Kaczorowski Dariusz1

Affiliation:

1. Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-420 Wrocław, Poland

Abstract

Half-Heusler (HH) phases are among the most extensively studied thermoelectric materials. Bipolar thermal conductivity analysis performed for their sub-group based on rare-earth ([Formula: see text]) metals, RNiSb, indicated high mobility ratio in favor of electrons. The result motivated studies of ScNiSb[Formula: see text]Tex series in which [Formula: see text]-type-doped samples shown higher mobility and significantly improved thermoelectric performance [K. Ciesielski et al., Phys. Rev. Appl. 15, 044047 (2021)]. Recently, Kajikawa attempted alternative interpretation of transport properties in ScNiSb, where multi-parameter fit led to mobility ratio in favor of holes [Y. Kajikawa, Int. J. Mod. Phys. B 2250071 (2022)]. In this work we discuss the details of electrical properties and thermoelectric performance of ScNiSb in the context of structural disorder and the most recent experimental literature on a related chemical system. The paper considers also relevant assumptions regarding band degeneracy and scattering mechanisms for effective mass modeling in ScNiSb. Last, technical difficulties of the model proposed by Kajikawa are addressed. We believe that the provided insight will be useful for understating electrical transport in HH compounds, which can contribute to further improvement of their thermoelectric performance.

Funder

Narodowe Centrum Nauki

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3