Pinning force scaling analysis of Fe-based high-Tc superconductors

Author:

Koblischka Michael R.1,Muralidhar Miryala2

Affiliation:

1. Experimental Physics, Saarland University, Campus Building C 6 3, D-66123 Saarbrücken, Germany

2. Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan

Abstract

Pinning force data, [Formula: see text], of a variety of Fe-based high-[Formula: see text] superconductors (11-, 111-, 122- and 1111-type) were analyzed by means of a scaling approach based on own experimental data and an extensive collection of literature data. The literature data were mostly replotted, but also converted from critical current measurements together with data for the irreversibility line when available from the same authors. Using the scaling approaches of Dew-Hughes [J. Appl. Phys. 44, 1360 (1973)] and Kramer [Philos. Mag. 30, 293 (1974)], we determined the scaling behavior and the best fits to the theory. The data of most experiments analyzed show a good scaling behavior at high temperatures when plotting the normalized pinning force [Formula: see text] versus the irreversibility field, [Formula: see text]. The resulting peak positions, [Formula: see text], were found at [Formula: see text] for the 11-type materials, at [Formula: see text] for the 111-type materials, between 0.32 and 0.5 for the 1111-type materials and between 0.25 and 0.71 for the 122-type materials. Compared to the typical results of Bi2Sr2CaCu2O[Formula: see text] [Formula: see text] and YBa2Cu3O[Formula: see text] [Formula: see text], most of the 122 and 1111 samples investigated show peak values higher than 0.4, which is similar to the data obtained on the light-rare earth 123-type HTSC like NdBa2Cu3Oy. This high peak position ensures a good performance of the materials in high applied magnetic fields and is, therefore, a very promising result concerning the possible applications of the Fe-based high-[Formula: see text] superconductors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3