Impact of thermal radiation on two-dimensional unsteady third-grade fluid flow over a permeable stretching Riga plate

Author:

Nadeem Sohail1,Ishtiaq Bushra1ORCID,Abbas Nadeem2

Affiliation:

1. Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan

2. Department of Mathematics, Riphah International University, Faisalabad Campus, Faisalabad, 38000 Pakistan

Abstract

In many fields, there are various applications of non-Newtonian fluids. Various complicated fluids (polymer melts, clay coatings and oil) belong to the category of non-Newtonian fluids. The third-grade fluid is one of the most important non-Newtonian fluid models. This paper has the primary object of heat transfer mechanism and boundary layer third-grade fluid flow under the effects of thermal radiation. The time-dependent two-dimensional flow is considered to flow above a permeable stretchable vertical Riga plate. For numerical solutions, the setup of ordinary differential equations (ODEs) is acquired by converting nonlinear governing equations through relevant similarity transformations. The nonlinear setup of ODEs is numerically solved with the aid of a suitable software such as MATLAB via its bvp4c technology. Graphs are sketched to discuss the various flow parameters’ significance for the expression of velocity and temperature fields. Tabulated values of surface drag force and heat transfer rate corresponding to the numerous pertinent parameters are described. The current analysis of the concerned flow mechanism concludes that the fluid parameters descend the temperature distribution but amplify the profile of the fluid velocity. The radiation parameter escalates the temperature field.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3