Affiliation:
1. Département d’informatique et d’ingénierie, Université du Québec en Outaouais, 101 St-Jean-Bosco, Succursale Hull, Gatineau (PQ) J8Y 3G5, Canada
Abstract
To analytically investigate the matter-wave solitons of Bose–Einstein condensates (BECs) in time-dependent complex potential, we consider a cubic-quintic Gross–Pitaevskii (GP) equation with distributed coefficients and a dissipative term. By introducing a suitable ansatz, we establish the criterion of the modulational instability (MI) of the system and present an explicit expression for the growth rate of a purely growing MI. Effects of the parabolic background potential, as well as of the linear potential, the gain/loss parameter, and the two- and three-body interatomic interactions on the MI are investigated. We show how the feeding/loss parameter can be well used to control the instability of the system. The analytical resolution of the considered GP equation leads to exact bright, dark and kink solitary wave solutions which are used to investigate analytically the dynamics of matter-wave solitons in BECs under consideration. These analytical investigations show that the amplitude and the motion of bright, dark and kink solitary waves depend on the strengths of the two- and three-body interatomic interactions, as well as on the strengths of the external trapping potential and the parameter of the gain/loss of atoms in the condensate.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献