Theory and calculation of colloidal depletion interaction

Author:

Ma Hongru1

Affiliation:

1. School of Mechanical Engineering, The State Key Laboratory of Metal Matrix Composites and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract

Colloidal dispersion is composed of particles with size ranging from 1 nm to [Formula: see text]m dispersed in solvents. There are the volume exclusion interaction and other interactions between colloidal particles, of which the former interaction causes the depletion effect. When a big sphere is immersed in the colloidal system of small spheres, there is a depletion layer around the big sphere where the center of small sphere cannot enter. The depletion layers of two big spheres overlap if they are close to each other, increasing the free volume accessed by small spheres and thereby enlarging the entropy of the system. As a result, an effective interaction between the two big spheres is resulted from the change of entropy as a function of their distance, which is referred to as the depletion interaction. This paper first introduces the concept and scenario of the depletion interaction in colloidal systems. Then we briefly introduce various numerical or simulations methods of the depletion interaction of hard sphere systems, such as the acceptance ratio method, Wang–Landau method, and the density functional theory method. Taking the Asakura–Oosawa model as an example, we introduce a useful approximation method, Derjaguin approximation as well as the derivation of some approximate formula for the depletion interaction of different hardcore colloidal systems, such as between a pair of spheres in mono-disperse small spheres, between a hard sphere and a hard wall in a liquid of small spheres, and between a pair of hard spheres in a liquid of thin rods and thin disks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3