Superconductivity and hall effect of polycrystalline Pb82Bi18 thin films, a universal test platform for flux pinning by hybrid nanostructures

Author:

Bang Wonbae1ORCID,Woo Sung Oh1,Morrison T. D.1,Teizer W.123,Rathnayaka K. D. D.1,Lyuksyutov I. F.1,Naugle D. G.12

Affiliation:

1. Department of Physics and Astronomy, Texas A&M University, College Station TX 77843, USA

2. Department of Materials Science and Engineering, Texas A&M University, College Station TX 77843, USA

3. WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

Abstract

We report the properties of superconductivity and Hall effect in 100 nm Pb[Formula: see text]Bi[Formula: see text] alloy thin films which were prepared by thermal evaporation with quench condensation using liquid nitrogen. X-ray diffraction indicates the films are [Formula: see text]-phase with peaks shifted to lower angles compared to pure Pb. The [Formula: see text] of the films was higher than those of an amorphous Pb–Bi alloy thin film of the same composition and pure bulk Pb. The resistivity, critical field and critical current density of the thin films are reported. The coherence length ([Formula: see text][Formula: see text]) and London penetration depth ([Formula: see text]) near [Formula: see text] were calculated from the experimental results. The films are in the dirty limit and behave as type-II superconductors with a Ginzburg–Landau parameter of about 10. Additionally, the films show sign reversal in Hall measurements. These films have been quite useful in a comprehensive study of the effects of flux pinning by integrated ferromagnetic nanostructures conducted in hybrid ferromagnet–superconductor samples in our lab over the past few years due to their single-phase nature and strong type-II behavior.

Funder

Welch Foundation

World Premier International Research Center Initiative

Ministry of Education, Culture, Sports, Science and Technology

National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3