Affiliation:
1. Panasonic Avionics Corporation, Lake Forest, CA 92630, USA
2. Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USA
Abstract
From femtosecond spectroscopy (fs-spectroscopy) of metals, electrons and phonons reequilibrate nearly independently, which contrasts with models of heat transfer at ordinary temperatures ([Formula: see text] K). These electronic transfer models only agree with thermal conductivity [Formula: see text] data at a single temperature, but do not agree with thermal diffusivity [Formula: see text] data. To address the discrepancies, which are important to problems in solid state physics, we separately measured electronic (ele) and phononic (lat) components of [Formula: see text] in many metals and alloys over [Formula: see text]290–1100 K by varying measurement duration and sample length in laser-flash experiments. These mechanisms produce distinct diffusive responses in temperature versus time acquisitions because carrier speeds [Formula: see text] and heat capacities [Formula: see text] differ greatly. Electronic transport of heat only operates for a brief time after heat is applied because [Formula: see text] is high. High [Formula: see text] is associated with moderate [Formula: see text], long lengths, low electrical resistivity, and loss of ferromagnetism. Relationships of [Formula: see text] and [Formula: see text] with physical properties support our assignments. Although [Formula: see text] reaches [Formula: see text] near 470 K, it is transient. Combining previous data on [Formula: see text] with each [Formula: see text] provides mean free paths and lifetimes that are consistent with [Formula: see text] K fs-spectroscopy, and new values at high [Formula: see text]. Our findings are consistent with nearly-free electrons absorbing and transmitting a small fraction of the incoming heat, whereas phonons absorb and transmit the majority. We model time-dependent, parallel heat transfer under adiabatic conditions which is one-dimensional in solids, as required by thermodynamic law. For noninteracting mechanisms, [Formula: see text]. For metals, this reduces to [Formula: see text] above [Formula: see text]20 K, consistent with our measurements, and shows that Meissner’s equation [Formula: see text] is invalid above [Formula: see text]20 K. For one mechanism with multiple, interacting carriers, [Formula: see text]. Thus, certain dynamic behaviors of electrons and phonons in metals have been misunderstood. Implications for theoretical models and technological advancements are briefly discussed.
Funder
National Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Reference65 articles.
1. P. J. Klemens, in Low Temperature Physics I, eds. J. G. Daunt et al., Encyclopedia of Physics Series, Vol. 3 (Springer, Berlin, 1956), p. 198.
2. Thermal Conductivity of Metals
3. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), pp. 20–24, 30–61, 140–145, 345–351.
4. Thermal conductivity of metals and alloys
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献