Magnetic, structural and dc electrical resistivity studies on the divalent cobalt substituted Ni–Zn ferrite system

Author:

Siva Ram Prasad M.12,Prasad B. B. V. S. V.1,Rajesh Babu B.2

Affiliation:

1. Department of Physics, MVGR College of Engineering, Chintalavalasa, Vizianagaram, A.P, India

2. Department of Science and Humanities, GVP-COE(W), Madhurawada, Visakhapatnam, A.P, India

Abstract

Polycrystalline cobalt substituted Ni – Zn ferrite with composition Ni 0.65-x Co x Zn 0.35 Fe 2 O 4(x = 0.00–0.25 insteps of 0.05) have been prepared through the conventional solid state ceramic method. Calcination and sintering have been performed in air atmosphere at 950°C and 1250°C for 4 h and 2 h, respectively followed by natural cooling to room temperature. X-ray diffraction patterns of all samples indicated the formation of the single spinel structure and the accurate lattice parameter for each composition has been determined using the Nelson–Riley error function. The increase in lattice constant on cobalt substitution is attributed to the ionic radius difference between the displaced and the substituted ion. The variation in lattice constant on incorporation of Co 2+ ion indicates its solubility into the spinel lattice and noticeable modification in structural properties have been observed. The observed increase in the saturation magnetization and Curie temperature with the increase in the Co 2+ substitution is due to its higher magnetic moment compared to that of Ni 2+, improvement in the A–B exchange interaction mechanism and large positive contribution to magnetic anisotropy due to presence of Co 2+ when they are at the octahedral sites. The observed variation in the initial magnetic permeability and the magnetic loss factor with cobalt substitution measured at a low frequency of 1 KHz have been attributed to the modification in the density, porosity, grain size and anisotropy contributions. A nearly comparable variation is observed in the room temperature dc electrical resistivity and activation energy for conduction and is attributed to the modification in structure, role and nature of cobalt ions and the microstructure aspects like grain size and pore concentration. The activation energy values in the range of 0.28 to 0.36 eV suggest a possible electron hopping. The observed changes in the structural and the magnetic and electrical properties have all been discussed in the light of exiting understanding.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3