The device simulation of MXene-added hole-transport free perovskite solar cells

Author:

Azadi Saeid Khesali1,Asgharizadeh Saeid1

Affiliation:

1. Faculty of Physics, University of Tabriz, Tabriz, Iran

Abstract

Perovskite solar cells (PSCs) without hole transport layer (HTL) based on organic and inorganic metal halide perovskite have received vast consideration in recent years. For predigestion of device structure and construction process, the exclusion of the HTL is a marvelous way. By detaching the HTL part of the devices, we could reduce the cost and complexity of the structures. Currently, a novel 2D material named Ti3C2 MXene with high electron mobility, excellent metallic conductivity and functionalized surface groups applied for tuning the energy offsets has been reported to be added in the perovskite absorber layer, leading to a remarkable power conversion efficiency (PCE) improvement. In this work, the role of MXenes in controlling the work function of the involved layers to modify the band alignment towards better performance of the cells is explained. Two HTL free structures of FTO/mTiO2/cTiO2/MAPbI3/Spiro-OMeTAD/Au named as HFRC, and FTO/mTiO2+MXene/cTiO2+MXene/MXene/MAPbI3+MXene/Spiro-OMeTAD/Au named as HFMC were simulated by SCAPS-1D software to study the response of the photovoltaic devices and obtain the highest possible efficiency considering the physics behind. To the best of our knowledge, this is the first time such structures and the results of the current simulation are studied that may be used as a guideline for other practical purposes. We present a modeling procedure that optimizes the thickness of the involved layers and specifies the optimum level of the doping concentration. We also show that by optimizing the work function of the back contact, the device performance witnesses a significant improvement, proving the considerable role of the back contact in these cells. The simulated HTL-free devices illustrate attainably PCEs of about 20.32% and 21.04% for the cells without and with MXene, under AM 1.5G illumination and absorption up to 760 (nm).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3