Affiliation:
1. Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
Abstract
The literature on growing network models, exemplified by the preferential attachment model and the copying model, has followed an exponential growth in the last few years. In many real-life scenarios, however, the adding of new nodes and edges is not an exogenous process, but involves inheritance and sharing of the local environment of the existing ones. In this paper, we develop a mathematical framework to analytically and numerically study the percolation properties of the random networks with proliferation. We compare random attack (RA) and localized attack (LA) on benchmark models, including Erdős–Rényi (ER) networks, random regular (RR) networks, and scale-free (SF) networks, with proliferation mechanism. Our results highlight the nonmonotonic connections with robustness and growth, and unravel an intriguing opposite effect for RA and LA. In particular, it is shown that unbalanced proliferation enhances robustness to RA while it mitigates robustness to LA, both independent of the network degree distribution.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献