Effect of process parameters on the microstructure evolution of laser surface quenched Ni-Al bronze

Author:

Qin Zhenbo1,Xia Da-Hai1,Deng Yida1,Hu Wenbin12,Wu Zhong1

Affiliation:

1. Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, P. R. China

2. Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China

Abstract

Laser surface quenching technology was used to modify the surface microstructure of as-cast Ni-Al bronze (NAB). The modified microstructure was studied by scanning electron microscopy (SEM), and the effect of laser process parameters on microstructure evolution was investigated. It was found that a fine-grained zone with fully [Formula: see text] phase microstructure formed on the surface of NAB. The depth of the fine-grained zone increased with the increase of laser power, and surface melting occurred when the power reached a threshold value. Laser scanning at a low rate caused the coarsening of grain boundary, while too high rate led to incomplete quenching. Spot overlap ratio determined the microstructure of the superimposed area, and unsuitable ratio would cause bulky [Formula: see text] precipitation at the grain boundary or incomplete transformation from [Formula: see text] phase to [Formula: see text] phase.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3