Computational Simulation of Fracture Behavior Due to Mechanical and Constituent Properties of CFCCs

Author:

Kwon Oh Heon1,Yun Yu Seong2

Affiliation:

1. Department of Safety Engineering, Pukyong National University, Busan, 608-739, Korea

2. Graduate School Department of Safety Engineering, Pukyong National University, Busan, 608-739, Korea

Abstract

Continuous fiber reinforced ceramic matrix composites (CFCCs) are recently a subject of a lot of research interest due to advantages which are high specific stiffness and strength, high toughness and nonbrittle failure as compared to monolithic ceramics. The basic purpose of the present study is to describe graphically the fracture behavior of CFCCs according to a dependence on constituent properties. In CFCCs, following matrix cracking, intact fibers bridge effects impose closure tractions behind the crack tip that reduce the driving force for further cracking. Thus matrix cracking stress and bridging stress are important. Then the change of fiber volume fraction is given for the matrix cracking stress by the numerical simulation. Numerical simulation are carried out by using a finite element analysis code ANSYS. The double mesh concept is applied to account for fiber and matrix material properties.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3