Modeling of molecular logic circuits using switching property of bipyridine–biborinine molecular diodes

Author:

Safapour Saleh1,Sabbaghi-Nadooshan Reza1ORCID,Shokri Aliasghar2

Affiliation:

1. Electrical Engineering Department, Islamic Azad University, South Tehran Branch, Tehran, Iran

2. Department of Theoretical Physics and Nano, Faculty of Physics, Alzahra University, Tehran, Iran

Abstract

Many researchers have focused on molecular electronics, and this field can progress faster by applying semiconductors to molecular modeling. In this work, two middle rings of a bipyridine–biborinine molecular diode are rotated from 25° to 90° such that the current along the molecule is reduced. The current is minimum and almost zero at 90°, while it is maximum at 25°. Accordingly, considering these two angles, the molecule can act as a switching device when the two middle rings are rotated. The bipyridine–biborinine molecular diode is modeled considering the effect of rotation by including two resistors in the model. Two parallel diodes are used in this modeling for pyridine and borinine rings. The ideality factors of these diodes are varied based on the electronegativity of pyridine and borinine rings. This model is then applied to consider different molecular logic gates such as NAND, NOR, NOT, OR and AND gates, as well as molecular logic circuits (half adder and full adder), using the unique capabilities of the LTspice software.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3