PHOTOPHYSICS OF CONFINED EXCITONS IN CuCl NANOPARTICLES - CONFINEMENT OF EXCITON EXCITED STATES -

Author:

ITOH T.1,YAMANAKA K.1,EDAMATSU K.1,UOZUMI T.2,KAYANUMA Y.2

Affiliation:

1. Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan

2. College of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan

Abstract

Exciton excited states of CuCl nanoparticles dispersed in NaCl matrix have been investigated by means of two-photon excitation and two-step IR transient absorption. In the two-photon excitation spectra, there appears a distinct absorption edge. As the particle radius decreases from 6.3nm to 1.6nm, the edge energy increases by about 0.15eV, more than twice as large as that of the lowest 1S state. The fast decay component of the IR transient absorption under pulsed excitation of the lowest 1S exciton shows a broad band which shifts from 0.2 to 0.4eV as the radius decreases from >10nm to 1.4nm. These absorption edge and band are ascribed to the nP-like Rydberg excited states of the confined excitons. The large energy shift indicates that the weak confinement which is typically valid for the lowest 1S exciton state in CuCl nanoparticles is no more applicable to these excited states. Their spectra and confinement effect are discussed in comparison with theoretical prediction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3