Fatigue Behavior of TiN and TiCN Coated a Rotor Turbine Steel

Author:

Suh Chang Min1,Kim Kyung Ryul2,Kang Yong Goo3,Suh Duck Young4,Kim Chang Keun5

Affiliation:

1. School of Mechanical Eng. Kyungpook National University, Korea

2. Pohang Accelerator Laboratory, POSTECH, Korea

3. Kumoh University of Technology, Korea

4. Dept. of Energy & Information. Doowon Technical College, Korea

5. New Tech. Co., Korea

Abstract

In order to clarify the effect of ceramic coating films on the fatigue strength, and crack initiation of material, fatigue tests were carried out in room air, using the round plain specimens and compact tension specimens of 1Cr-1Mo-0.25V steel coated with TiN and TiCN are ion plating (AIP) process. It was observed that the scatter band of fatigue life at low fatigue strengths was wider than that at high fatigue strengths. The obvious improvement of fatigue life was confirmed in TiCN coated specimens for the region of low fatigue strengths, as compared with uncoated and TiN coated specimens. It was explained that the increase of fatigue life in the TiCN coated material was attributed to the retardation of crack initiation due to the restriction of surface plastic deformation in the substrate with hard coating layer. Also, the fatigue strength at 107 cycles of ceramic coated material was increased about 15 ~ 21% higher than that of base material. The fatigue crack of TiCN coated material was mainly initiated at the inclusions of Al compositions near the substrate under coating film.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3