PHASE STABILITY OF ALKALI METALS UNDER PRESSURE: PERTURBATIVE AND NON-PERTURBATIVE TREATMENTS

Author:

MUJIBUR RAHMAN S. M.1,ALI ISSAM1,BHUIYAN G. M.2,ZIAUDDIN AHMED A. Z.2

Affiliation:

1. Physics Department, College of Science, Sultan Qaboos University, P.O. Box: 36, Al Khod, Postal Code: 123, Muscat, Sultanate of Oman

2. Physics Department, University of Dhaka, Dhaka 1000, Bangladesh, India

Abstract

We have investigated the structural phase stability of crystalline alkali metals under external pressure in terms of their pair potentials, structural free energies, thermomechanical properties viz. the elastic constants and the density-of-sates [DOS] at the Fermi level. The pair potentials are calculated using amenable model potentials, the structural energies and the elastic constants are calculated in terms of the effective pair potentials and the DOS for the systems are calculated by employing the augmented-spherical-waves [ASW] method. The matching between the minima of the pair potentials and the relative positions of the first few lattice vectors of the relevant structures gives a qualitative impression on the relative stability of a crystal phase. Similarly the appearance of a minimum in the energy difference curves between relevant crystal structures manifests a relatively stable structure. On the contrary, a maximum in the bulk modulus indicates a stable structure; these maximum-minimum criteria are controlled by the profile of the effective pair interactions of the constituent atoms. If the relevant lattice vectors are populated in and around the minimum of the respective pair potential the corresponding bulk modulus shows a maximum trend. The same situation gives rise to a minimum in the free energy. Both of these tendencies favor a particular crystalline phase against other relevant structures. Similarly a maximum in the DOS curves gives rise to a minimum in the energy curve manifesting a stable structure. The population of electronic states plays the responsible role here. To treat the two entirely different methods, namely, the perturbative pseudopotential theory and the non-perturbative ASW method on the same footing, we have used the same metallic density in both the methods for the respective element. The calculated results show a qualitative trend in support of the observed structures for these elemental systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3