LONG-TIME RELAXATION ON SPIN LATTICE AS A MANIFESTATION OF CHAOTIC DYNAMICS

Author:

FINE BORIS V.1

Affiliation:

1. Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden, Germany

Abstract

The long-time behavior of the infinite temperature spin correlation functions describing the free induction decay in nuclear magnetic resonance and intermediate structure factors in inelastic neutron scattering is considered. These correlation functions are defined for one-, two- and three-dimensional infinite lattices of interacting spins, both classical and quantum. It is shown that, even though the characteristic time-scale of the long-time decay of the correlation functions considered is non-Markovian, the generic functional form of this decay is either simple exponential or exponential multiplied by cosine. This work contains (i) the summary of the existing experimental and numerical evidence of the above asymptotic behavior; (ii) theoretical explanation of this behavior; and (iii) semi-empirical analysis of various factors discriminating between the monotonic and the oscillatory long-time decays. The theory is based on a fairly strong conjecture that, as a result of chaos generated by spin dynamics, a Brownian-like Markovian description can be applied to the long-time properties of ensemble average quantities on a non-Markovian time-scale. The formalism resulting from that conjecture can be described as "correlated diffusion in finite volumes."

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3