Affiliation:
1. Thapar Institute of Engineering and Technology, School of Mathematics, Patiala, Punjab 147004, India
2. Aeronautical and Mechanical Engineering, University of Salford, Manchester M54WT, UK
Abstract
The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms (moves under the effects of gravity) over a nonlinear inclined stretching sheet in the presence of a nonuniform magnetic field has been investigated. This regime is encountered in the bio-nanomaterial electroconductive polymeric processing systems currently being considered for third-generation organic solar coatings, anti-fouling marine coatings, etc. Oberbeck–Boussinesq approximation along with ohmic dissipation (Joule heating) is considered in the problem. The governing equations of the flow are nonlinear partial differential equations and are converted into ordinary differential equations via similarity transformations. These equations are then solved by the Finite Element Method. The effect of various important parameters on nondimensional velocity, temperature distribution, nanoparticle concentration, the density of motile micro-organisms is analyzed graphically in detail. It is observed from the obtained results that the flow velocity decreases with rising angle of inclination [Formula: see text] while temperature, nanoparticle’s concentration and density of motile micro-organisms increase. The local skin friction coefficient, Nusselt number, Sherwood number, motile micro-organism’s density number are calculated. It is noticed that increasing the Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, the Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. Also, interesting features of the flow dynamics are elaborated and new future pathways for extension of the study identified in bio-magneto-nano polymers (BMNPs) for solar coatings.
Funder
National Natural Science Foundation of China
Scientific Research Foundation of Hunan Provincial Education Department
Hunan Provincial Science and Technology Department
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献