EVOLUTION OF INTERFERENCE PATTERNS OF SUPERFLUID FERMI GASES RELEASED FROM A TWO-DIMENSIONAL OPTICAL LATTICE

Author:

LIU SUJUAN1,WEN WEN2,HUANG GUOXIANG1

Affiliation:

1. State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China

2. Department of Mathematics and Physics, Hohai University, Changzhou Campus, 200 Jingling Road North, Changzhou, Jiangsu 213002, China

Abstract

We study interference patterns and their time evolution of a superfluid fermionic gas released from a two-dimensional (2D) optical lattice below and above Feshbach resonance. We calculate initial distribution of many subcondensates formed in a combined potential of a parabolic trap and a 2D optical lattice in the crossover from Bardeen–Cooper–Schrieffer (BCS) superfluid to a Bose–Einstein condensate (BEC). By using Feynman propagator method combined with numerical simulations we investigate the interference patterns of the subcondensates for two different cases. One is when both the parabolic trap and optical lattice are switched off. In this case, interference pattern displays a main peak and many secondary peaks. The distance between these interference peaks grows as time increases. The other one is when only the 2D optical lattice is switched off. The interference pattern in this case is found to display decay and revival, and such behavior repeats periodically with increasing time. In different regimes of the BCS-BEC crossover, coherent arrays of interference patterns show different features, which can be used to characterize experimentally different properties in different superfluid regimes of the BCS–BEC crossover.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3