Hydrophobicity of an isobutane dimer in water, methanol and acetonitrile as solvents — A classical molecular dynamics study

Author:

Bataju Sailesh1,Pantha Nurapati2

Affiliation:

1. Golden Gate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal

2. Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal

Abstract

The potential of mean forces (PMFs) has been determined for an isobutane dimer in various solvent environments such as water, methanol and acetonitrile at a temperature of 298 K and pressure of 1 bar using GROMACS software. All the molecular dynamics (MD) simulations are carried out using a TIP3P water model under a CHARMM36 forcefield. Following Umbrella Sampling technique, PMFs are calculated and analyzed using Weighted Histogram Analysis Method (WHAM) and coordination number of first solvation shell is extracted for all solvents using radial distribution function. The shape of PMFs contains contact minima, solvent-separated minima and desolvation maxima. The values of contact minima are not affected much by solvent environment and found to be at 0.5377, 0.5480 and 0.5495 nm for water, methanol and acetonitrile respectively. The corresponding energy depths are found −0.9134, −0.7080 and −0.5295 kcalmol[Formula: see text]. The variation observed at solvent-separated minima is noticeable and found at 0.9012, 0.9721 and 0.9151 nm for water, methanol and acetonitrile, respectively. The coordination number of the first solvation shell by taking an isobutane molecule as a reference from their center of mass is found to be 28.1, 16.9 and 14.8 for water, methanol and acetonitrile, respectively. There is a soft hydrophobic interaction between isobutane dimer and solvents like methanol and acetonitrile relative to water, might be due to the presence of competitive methyl group of methanol and acetonitrile in the solvent medium.

Funder

University Grants Commission

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3