FINITE-SIZE SCALING OF THE CORRELATION LENGTH IN ANISOTROPIC SYSTEMS

Author:

CHEN X. S.1,ZHANG H. Y.1

Affiliation:

1. Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China

Abstract

The finite-size scaling functions of thermodynamic functions in anisotropic systems have been shown to be dependent on the spatial anisotropy [X.S. Chen and V. Dohm, Phys. Rev. E 70, 056136 (2004)]. Here we extend this study to the correlation length ξ of the anisotropic O (n) symmetric φ4 model in an Ld−1 × ∞ cylindric geometry with periodic boundary conditions. We calculate the exact finite-size scaling function of correlation length ξ for T ≥ Tc in 2 < d < 4 dimensions and in the limit n → ∞. The finite-size scaling function of ξ is dependent on a normalized symmetric (d − 1) × (d − 1) matrix defined by the anisotropy matrix of anisotropic systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Reference23 articles.

1. V. Privman, A. Aharony and P. C. Hohenberg, Phase Transitions and Critical Phenomena 14, eds. C. Domb and J. L. Lebowitz (Academic, New York, 1991) p. 1.

2. Universal critical amplitudes in finite-size scaling

3. The relation between amplitudes and critical exponents in finite-size scaling

4. J. L. Cardy, Phase Transitions and Critical Phenomena 11, eds. C. Domb and J. L. Lebowitz (Academic, New York, 1987) p. 55.

5. Critical behaviour at an edge

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3