Intense laser field and conduction band-edge nonparabolicity effects on hydrogenic impurity states of InGaN QW

Author:

El Ghazi Haddou12

Affiliation:

1. Specials Mathematics, CPGE My Youssef, Rabat, Morocco

2. LPS, Faculty of Science, Dhar ElMehrez, BP 1796 Fes-Atlas, Morocco

Abstract

In this paper, hydrogenic impurity ground-state binding energy in unstrained wurtzite (In, Ga)N symmetric quantum well is investigated. The heterostructure is considered under the action of an intense laser field (ILF) incorporating an additional internal probe as well as the conduction band-edge nonparabolicity effect (CBENP). The variational approach is used within the framework of single band effective-mass approximation with two-parametric 1S-hydrogenic trial wavefunction. The competition effect between internal and external perturbations is also shown. Our results reveal that the binding energy is the largest for the well width around the effective Bohr radius and is strongly influenced by both parameters. Moreover, the principle effect of ILF (CBENP) is to reduce (enhance) the binding energy. It is found that the lift of the conduction band-edge can be easily eliminated by adjusting the ILF-parameter.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3