Effects of magnetic field and porosity on compressible flow in an asymmetric channel

Author:

Rafaqat R.1,Khan A. A.1ORCID

Affiliation:

1. Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan

Abstract

This study addressed the compressible flow of viscous fluid in an asymmetric channel under peristalsis. The difference in amplitudes and phase of traveling waves created the asymmetry of channel. Simultaneous effect of magnetic field is also incorporated. Fluid flows through a porous medium. The analytical treatment of the solution is carried out by considering upper wall amplitude as the small parameter. The expressions of flow rate and net axial velocity are constructed for the second-order approximation. Numerical integration is employed to calculate net flow rate. The role of sundry parameters is illustrated graphically. Trapping phenomenon is also taken into account by plotting streamlines against sundry parameters. The significant finding of this study is that flow rate and axial velocity enhance as fluid transitions from hydrodynamic to hydromagnetic. Enhancement in the compressibility parameter trims down the velocity and the flow rate as well. Also, asymmetry of the channel causes an enhancement in the flow rate. This model is the most prevailing version of compressible flow under peristalsis through an asymmetric channel. The findings of this study have worth mentioning yields, which can be applicable in numerous areas of fluid dynamics and aircraft industry.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3