Affiliation:
1. Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan
Abstract
This study addressed the compressible flow of viscous fluid in an asymmetric channel under peristalsis. The difference in amplitudes and phase of traveling waves created the asymmetry of channel. Simultaneous effect of magnetic field is also incorporated. Fluid flows through a porous medium. The analytical treatment of the solution is carried out by considering upper wall amplitude as the small parameter. The expressions of flow rate and net axial velocity are constructed for the second-order approximation. Numerical integration is employed to calculate net flow rate. The role of sundry parameters is illustrated graphically. Trapping phenomenon is also taken into account by plotting streamlines against sundry parameters. The significant finding of this study is that flow rate and axial velocity enhance as fluid transitions from hydrodynamic to hydromagnetic. Enhancement in the compressibility parameter trims down the velocity and the flow rate as well. Also, asymmetry of the channel causes an enhancement in the flow rate. This model is the most prevailing version of compressible flow under peristalsis through an asymmetric channel. The findings of this study have worth mentioning yields, which can be applicable in numerous areas of fluid dynamics and aircraft industry.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献