New paradigm for glassy-like anomalies in solids from fundamental symmetries

Author:

Baggioli Matteo123,Zaccone Alessio456

Affiliation:

1. Instituto de Fisica Teorica UAM/CSIC, c/Nicolas Cabrera 13-15, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain

2. Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

3. Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

4. Department of Physics “A. Pontremoli”, University of Milan, via Celoria 16, 20133 Milan, Italy

5. Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK

6. Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, UK

Abstract

Glasses and disordered materials are known to display anomalous features in the density of states, in the specific heat and in thermal transport. Nevertheless, in recent years, the question whether these properties are really anomalous (and peculiar of disordered systems) or rather more universal than previously thought, has emerged. New experimental and theoretical observations have questioned the origin of the boson peak (BP) and the linear in T specific heat exclusively from disorder and two-level systems (TLS). The same properties have been indeed observed in ordered or minimally disordered compounds and in incommensurate structures for which the standard explanations are not applicable. Using the formal analogy between phason modes (e.g., in quasicrystals and incommensurate lattices) and diffusions, and between amplitude modes and optical phonons, we suggest the existence of a more universal physics behind these properties. In particular, we strengthen the idea that linear in T specific heat is linked to low energy diffusive modes resulting from fundamental symmetries, and that a BP excess can be induced in crystals either by gapped optical-like modes and/or by anharmonic diffusive (Akhiezer) damping.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3