Bioconvection mechanism using third-grade nanofluid flow with Cattaneo–Christov heat flux model and Arrhenius kinetics

Author:

Waqas Hassan1,Khan Shan Ali1,Bhatti M. M.2ORCID,Hussain Sajjad1

Affiliation:

1. Department of Mathematics, Government College University Faisalabad, Layyah Campus 31200, Pakistan

2. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China

Abstract

This paper aims to study the effects of activation energy and thermal radiation in the bioconvection flow of nanofluid (third-grade nanofluid) containing swimming microorganisms in the presence of a heat source-sink past a stretching sheet. Brownian movement and thermophoresis diffusion are used in mathematical modeling. The given flow phenomenon is modeled in the form of governing partial differential equations. Furthermore, appropriate dimensionless transformation is used to transfer the governing system of PDEs into an ordinary one. The remodeled systems of ODEs are tackled numerically by bvp4c on Matlab with a shooting scheme in computational tool MATLAB. The bearing of prominently involved parameters on the numerical solution of velocity, temperature distribution, nanoparticles concentration and concentration of microorganisms is comprehensively discussed and elaborated through figures. It is established that velocity can be improved with a mixed convection aspect. Furthermore, the temperature and concentration of nanoparticles reduce against Prandtl number, also, large Peclet number declines the microorganisms field. The work contained in this paper has applications in nanotechnology, electrical and mechanical engineering, biomedicine, biotechnology, drug delivery, cancer treatment, food processing and various industries. No such work is yet reported, and it is good for the research in applied sciences.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3