Affiliation:
1. Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433, P. R. China
Abstract
The motivation in this paper is to simulate numerically some properties of an interacting Bose–Einstein condensate at zero temperature in an axial symmetry trapping potential with finite amplitude for modeling the practical experimental cases. By use of the basis expansion using three-dimensional harmonic oscillator eigenfunctions, we obtain the ground-state wavefunction and the collective excitation spectra of the system in both usual harmonic potential and different amplitudes of the finite potential. After comparing our results for the finite potential with the data derived from the harmonic potential, we conclude that the finite trap in the practical experiments decreases the entire excitation frequencies in the whole regimes. This decrease is consistent with our analytic prediction qualitatively and agrees well with the experimental data quantitatively.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献