Affiliation:
1. Office of Scientific Research and Industrial Service, Guangdong AIB Polytechnic College, Guangzhou 510507, P. R. China
Abstract
The semiconducting thin film solar cell based on Cu2ZnSnS4 (CZTS) materials is considered as a promising candidate for very large-scale application due to high absorption coefficient and low cost. In this study, the performances of n-ZnO/n-CdS/p-CZTS solar cells were numerically simulated using the AFORS-HET software. The influences of double-graded bandgap and thickness of CZTS layer on the performances of the solar cell were investigated. The calculated results show that double-graded bandgap structure can greatly optimize the conversion efficiency of CZTS thin film solar cell. The optimal dual gradient structure is 1.4 eV-1.3 eV-1.5 eV, the optimal thickness ratio is 11:1, and the conversion efficiency could be 26.63%. The results of this study can serve as a guide in fabricating CZTS solar cell.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics