SPIN AND ORBITAL PHYSICS IN MANGANITES

Author:

GU R. Y.12,WANG Z. D.23

Affiliation:

1. Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, USA

2. Department of Physics, the University of Hong Kong, Hong Kong, P.R.China

3. Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract

The spin and orbital physics in perovskite manganites is briefly reviewed. Perovskite manganites are well known as the materials exhibiting colossal magnetoresistance (CMR), whose mechanism is based on the double exchange (DE) interaction, in which the electron hopping is connected with the spin configurations of the manganite ions. Recent intensive studies have shown that this DE framework must be subjected to the strong correlation between orbital degenerate electrons. On one hand, the orbital degeneracy itself leads to an anisotropic DE hopping being different from the conventional DE, which in turn may result in the anisotropy of the magnetic structure, such as the A-type or the C-type antiferromagnetism. On the other hand, the electronic correlation between these degenerate electrons plays an important role in determining the phases of the system. The correlation can come from both the on-site Coulomb interaction and the Jahn–Teller coupling between the lattice distortion and the electrons. The interplay of the DE mechanism and the strong electronic correlation leads to various magnetic, orbital and/or charge ordering as well as the phase separation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3