Experimental and theoretical studies on luminescent mechanisms and different visual color of the mixed system composed of MgGeO3:Mn, Eu and Zn2GeO4:Mn

Author:

Xia Chuanhui1,Zhou Mu1,He Miao1,Yang Liu1,Liu Miao1,Zhou Ping1,Chen Hang1,Wang Feng1ORCID

Affiliation:

1. School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China

Abstract

In this work, the mixed system composed of Zn2GeO4: Mn and MgGeO3: Mn, Eu was synthesized by the high temperature solid phase method. Under the external excitation, visual color of samples was yellow. However, after the excitation was completed, visual color turned to be red. From luminescence spectrum, it was found that Zn2GeO4: Mn emitted green fluorescence of 534 nm under the excitation of 375 nm light. At the same time, MgGeO3: Mn, Eu emitted both fluorescence and persistent luminescence (PersL) of 668 nm. Moreover, the properties of PersL present samples were superior to other red PersL materials. Fine band structures from density functional theory (DFT) indicated that there were different luminescent mechanisms of Zn2GeO4: Mn and MgGeO3: Mn, Eu. When Zn2GeO4: Mn was excited, electron transitioned from VB to CB directly. Through CB, the electron was captured by the4T2(D) of Mn ion, then the electron jumped from4T2(D) to VB and recombined at once with the previous hole and emitted a 534 nm photon. When MgGeO3: Mn, Eu was excited, electron transitioned from6A1(S) of Mn ion to CB and left a hole. Through CB, electron was captured by7F6levels of Eu[Formula: see text] and remained metastable for a long time, which slowed down the recombined rate between electron and hole. Under thermal stimulation, the captured electron returned to CB from7F6levels and was recaptured by the4T2(D) of Mn. The electron transitioned down toward6A1(S) and recombined with the hole immediately, then emitted a photon with 668 nm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3