THE INFLUENCE OF NONLOCAL COULOMB INTERACTION ON GROUND-STATE PROPERTIES OF THE FALICOV–KIMBALL MODEL IN ONE AND TWO DIMENSIONS

Author:

ČENČARIKOVÁ HANA1,FARKAŠOVSKÝ PAVOL1,ŽONDA MARTIN1

Affiliation:

1. Institute of Experimental Physics, Slovak Academy of Sciences, Watsonová 47, 041 01 Košice, Slovakia

Abstract

A combination of small-cluster exact diagonalizations and a well-controlled approximative method is used to study the ground states of the Falicov–Kimball model extended by nonlocal Coulomb interaction (U non ). It is shown that the ground-state phase diagram as well as the picture of valence and metal–insulator transitions found for the conventional Falicov–Kimball model are strongly changed when the nonlocal Coulomb interaction is added. This is illustrated for three selected values of the on-site Coulomb interaction (U) that represent typical behaviors of the model for small, intermediate and strong interactions. A number of remarkable results are found: (i) the phase separation takes place for a wide range of U non in all three interaction limits; (ii) in the weak and intermediate coupling limit, the model exhibits the nonlocal Coulomb interaction–induced insulator–metal transition; (iii) depending on the value of U non , the model is able to describe both the continuous and the discontinuous changes of the f-electron occupation number; (iv) new types of inhomogeneous charge ordering (including various types of axial and diagonal stripes) are observed for nonzero U non .

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3