Origin and Processes of O-Cu(001) and the O-Cu(110) Biphase Ordering

Author:

Sun Chang Q.12

Affiliation:

1. Gintic Institute of Manufacturing Technology, Nanyang Technological University, Singapore 639798, Singapore

2. School of Sciences, Murdoch University, Perth, Western Australia 6150, Australia

Abstract

From the perspective of bond forming, origin of phase-formation on the O-Cu(001) and the O-Cu(110)is analyzed. It is suggested that the formation of the O -1 and the hybridized- O -2 gives in nature the c (2 × 2)-O and subsequently, the [Formula: see text]phase, on the Cu(001). The re-ordering of the primary Cu2O units transforms the Cu(110)-(2×1)-O into the c (6 × 2)-O. As consequences of the O-2 -hybridization, the Cu(001)-[Formula: see text] differs from the Cu(110)-(2×1)-O in origin by nothing more than that the -O-Cu-chain rotates 45° to fit itself to the coordination-surrounding. It proposed that one metal atom may donate more than one-electron to different oxygen atoms. However, one oxygen, with two directional bonding orbitals and two nonbonding orbitals, can never get more than one-electron from a specific metal atom. The sp-hybridization of oxygen cannot occur before its two bonding orbitals are fully occupied. Besides the ionization of oxygen and metal atoms, the polarization of the metal and the hybridization of O -2 dominate the processes of oxidation and the behavior of the oxides. Further considerations are required regarding how the O-coverage reversibly varies the valence-state of oxygen, and how the coverage and temperature reassemble the Cu2O on the Cu(110).

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybridized Bonding;Electron and Phonon Spectrometrics;2020

2. Skin Bond Relaxation and Nanosolid Densification;Springer Series in Chemical Physics;2014

3. Introduction;Springer Series in Chemical Physics;2014

4. Size dependence of nanostructures: Impact of bond order deficiency;Progress in Solid State Chemistry;2007-01

5. Oxidation electronics: bond–band–barrier correlation and its applications;Progress in Materials Science;2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3