Affiliation:
1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
2. College of Educational Science and Technology, Northwest Minzu University, Lanzhou 730030, P. R. China
Abstract
Detecting the natural communities in a real-world network can uncover its underlying structure and potential function. In this paper, a novel community algorithm SUM is introduced. The fundamental idea of SUM is that a node with relatively low degree stays faithful to its community, because it only has links with nodes in one community, while a node with relatively high degree not only has links with nodes within but also outside its community, and this may cause confusion when detecting communities. Based on this idea, SUM detects communities by suspecting the links of the maximum degree nodes to their neighbors within a community, and relying mainly on the nodes with relatively low degree simultaneously. SUM elegantly defines a similarity which takes into account both the commonality and the rejective degree of two adjacent nodes. After putting similar nodes into one community, SUM generates initial communities by reassigning the maximum degree nodes. Next, SUM assigns nodes without labels to the initial communities, and adjusts the border node to its most linked community. To evaluate the effectiveness of SUM, SUM is compared with seven baselines, including four classical and three state-of-the-art methods on a wide range of complex networks. On the small size networks with ground-truth community structures, results are visually demonstrated, as well as quantitatively measured with ARI, NMI and Modularity. On the relatively large size networks without ground-truth community structures, the performances of these algorithms are evaluated according to Modularity. Experimental results indicate that SUM can effectively determine community structures on small or relatively large size networks with high quality, and also outperforms the compared state-of-the-art methods.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献