FABRICATION OF TWO-DIMENSIONAL PHOTONIC CRYSTALS WITH GE2SB2TE5 NANOHOLE ARRAYS BY NANOSPHERE LITHOGRAPHY

Author:

SONG KI-HO1,LEE HYUN-YONG1,YANG HOE-YOUNG2,KIM SUNG-WON2,SEO JAE-HEE2,YUN SANG-DON2,KIM JUN-HYUNG2

Affiliation:

1. Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbong-dong, Gwangju 500-757, Korea

2. Center for Functional Nano Fine Chemicals, Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbong-dong, Gwangju 500-757, Korea

Abstract

Two-dimensional photonic crystals (2D-PCs) with Ge 2 Sb 2 Te 5 ( GST ) nanohole arrays were prepared by the nanosphere lithography (NSL) process. A primary factor of PCs is that the refractive index (n) and the n-modulation can be realized by using the GST films, which exhibit a reversible phase transformation between amorphous and crystalline states by laser illumination. The polystyrene (PS) spheres with a diameter of 500 nm were spin-coated on Si substrate and subsequently reduced by O 2-plasma treatment. The reduced spheres were utilized as a lift-off mask of the NSL process and their size and separation could be precisely controlled. Amorphous GST films were thermally evaporated and then the reduced PS spheres were removed. The fabricated GST nanohole arrays were observed by SEM and AFM. The nanohole diameters are nearly linearly reduced with increasing plasma-treatment time (t). The reduction rate (δ) for the conditions of this work was evaluated to be ~ 0.92 nm/s. The period (Λ) and filling factor (η) of PCs are structure parameters that determine their photonic bandgaps (PBGs). η-modulation can be easily achieved via a control of t and the Λ can be also modulated by the use of PS spheres with specific diameter. In addition, the PBGs for the fabricated GST 2 D PC were calculated by considering the amorphous and crystalline states of GST .

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3