Affiliation:
1. School of Mechanical Engineering, Inner Mongolia University of Sciences and Technology, Baotou 014010, P. R. China
2. Key Laboratory of Green Extraction & Efficient, Utilization of Light Rare-Earth Resources, Ministry of Education, P. R. China
3. School of Material and Metallurgy, Inner Mongolia University of Sciences and Technology, Baotou 014010, P. R. China
Abstract
Molecular dynamics method was employed to establish the model of three-dimensional cross-linked polystyrene (PS) formed by divinylbenzene (DVB) and PS chains. Density, radial distribution function, free volume fraction, mean square displacement of systems with different cross-linking degrees (DVB contents of 0%, 3.8%, 7.1% and 11.1%) were studied, as well as macroscopic properties such as glass transition temperature, elastic mechanical properties, uniaxial tensile deformation. The results showed that cross-linking algorithm proposed was feasible for constructing cross-linked PS. With the increase of cross-linking degree, cross-linked PS became denser, and glass transition temperature increased, indicating an increase of heat resistance. Compared with uncross-linked PS, elastic modulus of three cross-linked systems increased by 19.26%, 29.56% and 40.19%; bulk modulus increased by 2.9%, 20.98% and 44.03%; and shear modulus increased by 21.05%, 29.82% and 42.98%. Tensile stress-strain curves showed that network structure formed by adding DVB improved yield stress and tensile resistance of PS.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Inner Mongolia Autonomous Region of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献