Tensile properties and microstructure evolution of compacted graphite iron at elevated temperatures

Author:

Duan Hongyan1,Wang Zhiming1,Song Ming1

Affiliation:

1. School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China

Abstract

Attention has been focused on the fatigue problem for compacted graphite iron, when detonation pressure and temperature becomes higher and higher in combustion chamber for a long time. The compacted graphite iron plays an important role in the cylinder head of diesel industry for its good combination of thermal and mechanical properties. The damage mechanisms of compacted graphite iron under fatigue loading are observed in this study by scanning electron microscope (SEM) and in situ technique at elevated temperatures. The results show that tensile strength of compacted graphite iron decreases slightly at first, then decreases dramatically with the increasing temperature, which is a common phenomenon, even of various metallic materials. For the compacted graphite iron, these two stages are mainly controlled by different transformation mechanisms: the former mechanism, slip band stage, is affected by the inhibition of dislocation movement including strain strengthening, dynamic strain aging and precipitation hardening; and the latter, boundary sliding stage, is controlled by the vacancy diffusion. The newly proposed mechanisms can provide a new clue for the optimization of cast iron design. These damage mechanisms lay the foundation for the application of the crack technology.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3